Journal of Organometallic Chemistry, 398 (1990) 159–164 Elsevier Sequoia S.A., Lausanne JOM 20933

Isolation and structural characterisation of the allyl complexes $Os_4H(CO)_{11}(C_4H_5)$ and $Os_3H(CO)_9(C_4H_5)$

Hong Chen, Brian F.G. Johnson, Jack Lewis *

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (U.K.)

Dario Braga and Fabrizia Grepioni *

Dipartimento di Chimica 'G. Ciamician, Universita' Degli Studi Di Bologna, Via Selmi 2, 40126 Bologna (Italy)

(Received March 7th, 1990)

Abstract

A new tetraosmium cluster, $[Os_4H(CO)_{11}(C_4H_5)]$, has been isolated from the products of pyrolysis of $[Os_3(CO)_{10}(Me_2C_2)]$, and shown by a single crystal X-ray study to have a tetrahedral metal framework with the allyl ligand bonding to one of the faces in a μ_3 - η^3 mode. The structure of $Os_3H(CO)_9(C_4H_5)$ is also discussed.

Introduction

The interactions of alkynes and metal clusters have attracted attention over many years, and many interesting results were summarised in a recent review [1]. In order to investigate the reactions of triosmium-alkyne species under vigorous conditions, the pyrolysis of $[Os_3(CO)_{10}(Me_2C_2)]$ was carried out at 210°C. The new tetraosmium allyl complex, $[Os_4H(CO)_{11}(C_4H_5)]$ (2) was isolated from the product mixture and characterised, together with the previously reported complex $[Os_3H(CO)_9(C_4H_5)]$ (1), for which two isomers have been identified [2], and two isomers of $[Os_4(CO)_{12}(C_4H_6)]$ (3) [3].

Results and discussion

The pyrolysis of $[Os_3(CO)_{10}(Me_2C_2)]$ at 210 °C produced as the major product $[Os_3H(CO)_9(C_4H_5)]$ (1, 60%), together with $[Os_4(CO)_{12}(C_4H_6)]$ (3, two isomers, ca. 15%) and $[Os_4H(CO)_{11}(C_4H_5)]$ (2, ca. 15%). These were identified from spectroscopic data (Table 1).

The ¹H NMR data for cluster 3 indicates that in addition to the previously reported $[Os_4(CO)_{12}(HCCEt)]$ (3a) [3], there is present a new isomer

TC-L1-	-1
I anie	
1 11 11 10	•

Spectroscopic data for 1-3

Compound	$IR(\nu(CO), cm^{-1})^{a}$	MS ^b		¹ H NMR ^c
$\overline{[Os_3H(CO)_9(C_4H_5)]}$	2099m, 2077s, 2049s,	882	8.68d d	1H: $J = 6.9$
(1)	2020s, 2008s, 2002s,		8.17dd	1H: $J_1 = 6.9$, $J_2 = 0.9$
	1991m, 1964vw.		2.95s	3Н
			- 19.25d	1H: $J = 0.9$
$[Os_4H(CO)_{11}(C_4H_5)]$	2100w, 2072s, 2055s,	1130	1.037d ^e	1H: $J = 5.9$
(2)	2026s, 2002w, 1985w,		8.05dd	1H: $J_1 = 5.9$, $J_2 = 0.5$
	1973vw, 1949w.		2.84s	3н
			- 21.13d	1H: $J = 0.5$
$[Os_4(CO)_{12}(C_4H_6)]$	2099vw, 2071vs,	1158	10.96s ^e	1 H
(3)	2045s,sh, 2039vs, 2017s,		3.67q	2H: <i>J</i> = 7.4
	2000s, 1974w.		1.27t	3H: <i>J</i> = 7.4
			3.56s	

^a Recorded in hexane solution. ^b Based on ¹⁹²Os. ^c Recorded in CDCl₃ at room temperature; all J values in Hz. ^d Recorded on a Bruker WP 80MHz spectrometer. ^c Recorded on a Bruker WM 250MHz spectrometer.

 $[Os_4(CO)_{12}(MeCCMe)]$ (3b) which accounts for the singlet at δ 3.56. These are inseparable by chromatographic techniques, and both may have the same butterfly structure.

Complex 1 gives an IR spectrum and a coupling pattern in the ¹H NMR spectrum identical to those of a previously reported cluster [2], but the ¹H NMR spectrum of $[Os_3H(CO)_9(C_4H_5)]$ (1) from our preparation shows different chemical shifts (0.4–0.8 ppm greater in our case). As no crystal structure of $[Os_3H(CO)_9(C_4-C_4)]$

Fig. 1. The molecular structure of $Os_3H(CO)_9(\mu-\eta^3-C_4H_5)$ (1) showing the atom labelling.

160

Table 2

-			
Os(1)-Os(2)	2.801(1)	Os(1)-Os(3)	2.952(1)
Os(2)-Os(3)	2.823(1)	Os(1)-C(12)	2.07(2)
Os(3)-C(10)	2.08(2)	Os(2)-C(10)	2.27(1)
Os(2)-C(11)	2.28(1)	Os(2)-C(12)	2.29(1)
C(10)-C(11)	1.43(2)	C(11)-C(12)	1.40(2)
C(12)-C(13)	1.60(2)		
C(10)-C(11)-C(12)	124(2)	C(11)-C(12)-C(13)	113(2)

Selected bond lengths (Å) and angles (°) in $[Os_3H(CO)_9(C_4H_5)]$ (1) with estimated standard deviations in parenthesis

H₅)] (1) has been reported, and there was the possibility that we had a new isomeric form, an X-ray diffraction analysis of 1 was carried out. We found that 1 has the structure proposed by Deeming [2], i.e. the allyl ligand is σ -bonded to two osmium atoms and η^3 - π -bonded to the third (Fig. 1). The origin of the differences in the chemical shift values between 1 and those previously reported is not clear.

Complex 2 is a 60-electron species, thus according to PSEP theory a tetrahedral structure would be expected. However, since it is isoelectronic with a cluster such as $[(\eta-C_5H_5)NiRu_3(CO)_8C_5H_7]$ [4], a butterfly structure was not impossible [4], and a single crystal X-ray diffraction study was carried out. This revealed a tetrahedral structure (Fig. 2), in which the allyl moiety, C_4H_5 , is bonded to one of the tetrahedral faces in a manner similar to that observed in $[Os_3H(CO)_9(C_4H_5)]$ (1), i.e. in a μ_3 - η^3 -bonding mode. Complex 2 is the first example of a tetranuclear cluster in which this bonding mode has been observed. Tetranuclear allyl species previously

Fig. 2. The molecular structure of $Os_4H(CO)_{11}(\mu-\eta^3-C_4H_5)$ (2) showing the atom labelling.

Os(1)-Os(2)	2.879(2)	Os(1)-Os(3)	2.596(2)	
Os(1)-Os(4)	2.868(2)	Os(2) - Os(3)	2.789(2)	
Os(2)-Os(4)	2.904(2)	Os(3)-Os(4)	2.777(2)	
Os(2)-C(12)	2.08(4)	Os(3)-C(12)	2.09(4)	
Os(3)-C(13)	2.21(4)	Os(3)-C(14)	2.15(3)	
Os(4)-C(14)	2.15(3)	C(12)-C(13)	1.35(5)	
C(13)-C(14)	1.47(5)	C(14)-C(15)	1.47(5)	
C(12)-C(13)-C(14)	115(3)	C(13)-C(14)-C(15)	116(3)	
C(13)-C(14) C(13)-C(14) C(12)-C(13)-C(14)	2.15(3) 1.47(5) 115(3)	C(12)-C(13) C(14)-C(15) C(13)-C(14)-C(15)	1.35(5) 1.47(5) 116(3)	

Selected bond lengths (Å) and angles (°) in $[Os_4H(CO)_{11}(C_4H_5)]$ (2) with estimated standard deviations in parenthesis

reported have either a 'butterfly' structure with a μ_4 - η^3 interaction [4,5] or a tetrahedral structure with the allyl ligand interacting with only two osmium atoms, i.e. σ -bonding to one metal atom and η^3 - π -bonding to the other [6].

In both 1 and 2, the hydride atom is probably bound to the Os-Os bonds spanned by the C₃-system, since this bond is the longest (2.952(1) Å in 1 and 2.904(2) Å in 2) and the CO-ligands appear to be forced away from the middle of the bond. One interesting feature of the molecular structure of 2 is the remarkably short Os-Os distance (Os(1)-Os(3) 2.596(2) Å) for the bond *trans* to the π -interac-

Table 4

Fractional atomic coordinates for 1

Atom	x	у	Z
Os(1)	0.28873(5)	0.45604(3)	0.00292(5)
Os(2)	0.20990(5)	0.32273(3)	0.06267(4)
Os(3)	0.36701(4)	0.31263(3)	-0.05535(4)
C(1)	0.3914(13)	0.4821(9)	0.0810(13)
O(1)	0.4541(10)	0.4976(7)	0.1292(11)
C(2)	0.3024(12)	0.5330(9)	-0.0894(14)
O(2)	0.3057(8)	0.5819(6)	-0.1513(10)
C(3)	0.2202(11)	0.5111(8)	0.0995(12)
O(3)	0.1827(9)	0.5426(6)	0.1620(9)
C(4)	0.1071(13)	0.3557(9)	0.1371(12)
O(4)	0.0465(9)	0.3758(8)	0.1788(9)
C	0.2915(12)	0.3368(8)	0.1721(13)
0(5)	0.3425(8)	0.3412(6)	0.2393(8)
Ció	0.1832(14)	0.2237(9)	0.0894(12)
O(6)	0.1672(9)	0.1629(7)	0.1084(10)
C(7)	0.4294(11)	0.3110(8)	-0.1822(15)
0(7)	0.4631(8)	0.3088(7)	-0.2645(9)
C(8)	0.3793(14)	0.2106(10)	-0.0299(11)
O(8)	0.3852(10)	0.1486(6)	-0.0190(9)
C(9)	0.4726(15)	0.3339(12)	0.0275(14)
O(9)	0.5292(11)	0.3400(8)	0.0808(10)
C(10)	0.2401(12)	0.2871(9)	-0.1044(10)
C(11)	0.1708(11)	0.3407(8)	-0.1083(10)
C(12)	0.1764(12)	0.4102(9)	-0.0616(11)
C(13)	0.0867(14)	0.4563(9)	-0.0693(13)

Table 3

tion, and this may be due to poor back-donation to the organic ligand resulting in a slight multiple-bond character of the metal-metal bond.

Experimental

Pyrolysis for $[Os_3(CO)_{10}(Me_2C_2)]$

In a typical reaction, a 63 cm³ Carius tube containing 61 mg Os₃(CO)₁₀(Me₂C₂) was evacuated for 3 h then sealed and heated at 210 °C for 60 h. The product mixture was extracted with ethyl acetate at 80 °C and the extracts subjected to thin layer chromatography on silica plates. Repeated elution with 30% CH₂Cl₂ in hexane gave five bands. The product in the first, yellow, band was identified as $[Os_3H(CO)_9(C_4H_5)]$ (1) (~60%) from spectroscopic data [2]. The second, orange, band was found to contain a mixture of two orange compounds which were separated by chromatography on alumina with hexane as eluent. They were characterised as $[Os_4H(CO)_{12}(C_4H_6)]$ (3, two isomers, ~15%) [3], and $[Os_4H(CO)_{11}(C_4H_5)]$ (2, ~15%). The other minor products were not identified.

Table 5

Fractional atomic coordinates for 2

Atom	x	y	z	
Os(1)	0.26340(10)	0.10206(15)	0.03901(8)	
Os(2)	0.26097(10)	0.32176(14)	0.16070(8)	
Os(3)	0.35276(9)	0.06125(15)	0.18445(8)	
Os(4)	0.14471(9)	0.06801(14)	0.17890(8)	
C(1)	0.1684(35)	0.1680(54)	- 0.0514(30)	
O(1)	0.1159(24)	0.1847(37)	-0.1096(21)	
C(2)	0.3787(26)	0.1467(37)	-0.0126(22)	
O(2)	0.4551(22)	0.1751(34)	-0.0426(19)	
C(3)	0.2695(29)	-0.0776(43)	0.0040(25)	
O(3)	0.2745(24)	-0.2028(37)	-0.0139(21)	
C(4)	0.3791(49)	0.4050(73)	0.1179(40)	
O(4)	0.4513(31)	0.4455(44)	0.0962(26)	
C(5)	0.2377(33)	0.4709(48)	0.2323(28)	
O(5)	0.2174(21)	0.5589(31)	0.2797(18)	
C(6)	0.1771(26)	0.4032(39)	0.0736(22)	
O(6)	0.1210(23)	0.4485(34)	0.0188(20)	
C(7)	0.4912(33)	0.0859(48)	0.1633(28)	
O(7)	0.5687(21)	0.1081(31)	0.1471(17)	
C(8)	0.3737(28)	-0.1376(43)	0.1771(24)	
O(8)	0.3942(19)	-0.2462(30)	0.1732(17)	
C(9)	0.0429(30)	0.1260(46)	0.0938(26)	
O(9)	-0.0200(24)	0.1554(36)	0.0498(20)	
C(10)	0.1359(27)	-0.1251(40)	0.1504(23)	
O(10)	0.1324(19)	- 0.2414(29)	0.1312(17)	
C(11)	0.0492(23)	0.0566(36)	0.2637(21)	
O(11)	0.0004(29)	0.0324(42)	0.3141(24)	
C(12)	0.3441(28)	0.2360(42)	0.2618(24)	
C(13)	0.3285(28)	0.1268(41)	0.3126(24)	
C(14)	0.2526(24)	0.0251(35)	0.2805(21)	
C(15)	0.2428(26)	-0.1031(37)	0.3299(22)	

Crystal structure determinations

Intensity data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer by the ω -2 θ scan method. An absorption correction was applied by the Walker and Stuart method [7] (correction range 0.56–1.00 and 0.48–1.00 for 1 and 2, respectively). H-atoms were added in calculated positions (C-H 1.08 Å). All non-hydrogen atoms in 1, and only Os-atoms in 2 were treated anisotropically. Isotropic values were refined for H-atoms in 1 (0.12 Å²) and in 2 (0.09 Å²). Fractional atomic coordinates for 1 and 2 are listed in Tables 4 and 5, respectively.

For all calculations the SHELX76 package of crystallographic programs was used [8].

Crystal structure data for $[Os_3H(CO)_9(C_4H_5)$ (1). $C_{13}H_6O_9Os_3$, M = 876.77, orthorhombic, space group Pbca, a = 15.175(3), b = 18.12(1), c = 12.709(5) Å, U = 3494.6 Å³, Z = 8, $D_c = 3.33$ g. cm⁻³, F(000) = 3072, $\mu(Mo-K_{\alpha}) = 209.5$ cm⁻¹, θ -range 2.5–25° final R-value 0.030, $R_w = 0.028$ for 1809 observed independent reflections $(I_0 > 2\sigma(I_0))$.

Crystal structure data for $[Os_4H(CO)_{11}(C_4H_5)]$ (2). $C_{15}H_6O_{11}Os_4$, M = 1123.01, monoclinic, $P2_1/c$, a = 13.367(4), b = 9.549(3), c = 16.178(1) Å, $\beta = 93.82(3)^\circ$, U = 2060.4 Å³, Z = 4, $D_c = 3.62$ g cm⁻³, θ -range 2.5–25°, final R-value 0.056, $R_w = 0.060$ for 2032 observed independent reflections $(I_0 > 2\sigma(I_0))$.

Acknowledgements

We thank Sino-British Friendship Scholarship Scheme for financial support (H.C.), and Johnson-Matthey for generous loans of osmium tetraoxide. Financial support by Ministero Pubblica Istruzione (Italy) is also acknowledged.

References

- 1 P.R. Raithby and M.J. Rosales, Adv. Inorg. Chem. Radiochem., 29 (1985) 169.
- 2 A.J. Deeming, S. Hasso and M. Underhill, J. Chem. Soc., Dalton Trans., (1975) 1614.
- 3 B.F.G. Johnson, J. Kelland, J. Lewis and S.K. Rehani, J. Organomet. Chem., 113 (1976) C42.
- 4 M.I. Bruce, M.A. Cairns and M. Green, J. Chem. Soc., Dalton Trans., (1972) 1293.
- 5 S. Aime and D. Osella, Inorg. Chim. Acta, 57 (1982) 207.
- 6 B.F.G. Johnson, J.W. Kelland, J. Lewis, A.L. Mann and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1980) 547.
- 7 N. Walker and D. Stuart, Acta Crystallogr., A, 39 (1983) 158.
- 8 G.M. Sheldrick, SHELX76 Package of Crystallographic Programs, University of Cambridge, U.K., 1976.