Isolation and structural characterisation of the allyl complexes $\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)$ and $\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)$

Hong Chen, Brian F.G. Johnson, Jack Lewis *
University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW (U.K.)
Dario Braga and Fabrizia Grepioni *
Dipartimento di Chimica 'G. Ciamician, Universita' Degli Studi Di Bologna, Via Selmi 2, 40126 Bologna (Italy)

(Received March 7th, 1990)

Abstract

A new tetraosmium cluster, $\left[\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]$, has been isolated from the products of pyrolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{Me}_{2} \mathrm{C}_{2}\right)\right]$, and shown by a single crystal X-ray study to have a tetrahedral metal framework with the allyl ligand bonding to one of the faces in a $\mu_{3}-\eta^{3}$ mode. The structure of $\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)$ is also discussed.

Introduction

The interactions of alkynes and metal clusters have attracted attention over many years, and many interesting results were summarised in a recent review [1]. In order to investigate the reactions of triosmium-alkyne species under vigorous conditions, the pyrolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{Me}_{2} \mathrm{C}_{2}\right)\right]$ was carried out at $210^{\circ} \mathrm{C}$. The new tetraosmium allyl complex, $\left[\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]$ (2) was isolated from the product mixture and characterised, together with the previously reported complex $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]$ (1), for which two isomers have been identified [2], and two isomers of $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ (3) [3].

Results and discussion

The pyrolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{Me}_{2} \mathrm{C}_{2}\right)\right]$ at $210^{\circ} \mathrm{C}$ produced as the major product $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right](1,60 \%)$, together with $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right](3$, two isomers, ca. 15%) and $\left[\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]$ (2, ca. 15\%). These were identified from spectroscopic data (Table 1).

The ${ }^{1} \mathrm{H}$ NMR data for cluster 3 indicates that in addition to the previously reported $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}(\mathrm{HCCEt})\right.$] (3a) [3], there is present a new isomer

Table 1
Spectroscopic data for 1-3

Compound	$\mathrm{IR}\left(\mathrm{p}(\mathrm{CO}), \mathrm{cm}^{-1}\right)^{a}$	MS ${ }^{\text {b }}$		${ }^{1} \mathrm{H} N \mathrm{NR}{ }^{\text {c }}$
$\left[\overline{\left.\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]}\right.$ (1)	$\begin{aligned} & 2099 \mathrm{~m}, 2077 \mathrm{~s}, 2049 \mathrm{~s}, \\ & 2020 \mathrm{~s}, 2008 \mathrm{~s}, 2002 \mathrm{~s}, \\ & 1991 \mathrm{~m}, 1964 \mathrm{vw} . \end{aligned}$	882	8.68 d 8.17 dd 2.95 s -19.25 d	$\begin{aligned} & 1 \mathrm{H}: J=6.9 \\ & 1 \mathrm{H}: J_{1}=6.9, J_{2}=0.9 \\ & 3 \mathrm{H} \\ & 1 \mathrm{H}: J=0.9 \end{aligned}$
$\left[\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]$ (2)	$\begin{aligned} & 2100 \mathrm{w}, 2072 \mathrm{~s}, 2055 \mathrm{~s}, \\ & 2026 \mathrm{~s}, 2002 \mathrm{w}, 1985 \mathrm{w}, \\ & 1973 \mathrm{vw}, 1949 \mathrm{w} . \end{aligned}$	1130	$\begin{gathered} 1.037 \mathrm{~d}^{e} \\ 8.05 \mathrm{dd} \\ 2.84 \mathrm{~s} \\ -21.13 \mathrm{~d} \end{gathered}$	$\begin{aligned} & 1 \mathrm{H}: J=5.9 \\ & 1 \mathrm{H}: J_{1}=5.9, J_{2}=0.5 \\ & 3 \mathrm{H} \\ & 1 \mathrm{H}: J=0.5 \end{aligned}$
$\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ (3)	2099nw, 2071vs, 2045s,sh, 2039vs, 2017s, 2000s, 1974w.	1158	$\begin{gathered} 10.96 \mathrm{~s} \\ 3.67 \mathrm{q} \\ 1.27 \mathrm{t} \\ 3.56 \mathrm{~s} \end{gathered}$	$\begin{aligned} & 1 \mathrm{H} \\ & 2 \mathrm{H}: J=7.4 \\ & 3 \mathrm{H}: J=7.4 \end{aligned}$

$\overline{{ }^{a} \text { Recorded in hexane solution. }{ }^{b} \text { Based on }{ }^{192} \mathrm{Os} .{ }^{c} \text { Recorded in } \mathrm{CDCl}_{3} \text { at room temperature; all } J}$ values in Hz. ${ }^{d}$ Recorded on a Bruker WP 80 MHz spectrometer. ${ }^{\text {E }}$ Recorded on a Bruker WM $\mathbf{2 5 0 M H z}$ spectrometer.
$\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}(\mathrm{MeCCMe})\right]$ (3b) which accounts for the singlet at δ 3.56. These are inseparable by chromatographic techniques, and both may have the same butterfly structure.

Complex 1 gives an IR spectrum and a coupling pattern in the ${ }^{1} H$ NMR spectrum identical to those of a previously reported cluster [2], but the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right](1)$ from our preparation shows different chemical shifts ($0.4-0.8 \mathrm{ppm}$ greater in our case). As no crystal structure of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4}{ }^{-}\right.\right.$

Fig. 1. The molecular structure of $\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mu-\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{5}\right)$ (1) showing the atom labelling.

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right](1)$ with estimated standard deviations in parenthesis

$O s(1)-\mathrm{Os}(2)$	$2.801(1)$	$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.952(1)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.823(1)$	$\mathrm{Os}(1)-\mathrm{C}(12)$	$2.07(2)$
$\mathrm{Os}(3)-\mathrm{C}(10)$	$2.08(2)$	$\mathrm{Os}(2)-\mathrm{C}(10)$	$2.27(1)$
$\mathrm{Os}(2)-\mathrm{C}(11)$	$2.28(1)$	$\mathrm{Os}(2)-\mathrm{C}(12)$	$2.29(1)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.43(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.40(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.60(2)$		
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$124(2)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$113(2)$

H_{5})] (1) has been reported, and there was the possibility that we had a new isomeric form, an X-ray diffraction analysis of 1 was carried out. We found that 1 has the structure proposed by Deeming [2], i.e. the allyl ligand is σ-bonded to two osmium atoms and $\eta^{3}-\pi$-bonded to the third (Fig. 1). The origin of the differences in the chemical shift values between 1 and those previously reported is not clear.

Complex 2 is a 60 -electron species, thus according to PSEP theory a tetrahedral structure would be expected. However, since it is isoelectronic with a cluster such as [$\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiRu}_{3}(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{7}$] [4], a butterfly structure was not impossible [4], and a single crystal X-ray diffraction study was carried out. This revealed a tetrahedral structure (Fig. 2), in which the allyl moiety, $\mathrm{C}_{4} \mathrm{H}_{5}$, is bonded to one of the tetrahedral faces in a manner similar to that observed in $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]$ (1), i.e. in a $\mu_{3}-\eta^{3}$-bonding mode. Complex 2 is the first example of a tetranuclear cluster in which this bonding mode has been observed. Tetranuclear allyl species previously

Fig. 2. The molecular structure of $\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mu-\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{5}\right)$ (2) showing the atom labelling

Table 3
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right](2)$ with estimated standard deviations in parenthesis

$O s(1)-O s(2)$	$2.879(2)$	$O s(1)-\mathrm{Os}(3)$	$2.596(2)$
$O s(1)-O s(4)$	$2.868(2)$	$O s(2)-\mathrm{Os}(3)$	$2.789(2)$
$O s(2)-O s(4)$	$2.904(2)$	$O s(3)-O s(4)$	$2.777(2)$
$O s(2)-C(12)$	$2.08(4)$	$O s(3)-C(12)$	$2.09(4)$
$O s(3)-C(13)$	$2.21(4)$	$O s(3)-C(14)$	$2.15(3)$
$O s(4)-C(14)$	$2.15(3)$	$C(12)-C(13)$	$1.35(5)$
$C(13)-C(14)$	$1.47(5)$	$C(14)-C(15)$	$1.47(5)$
$C(12)-C(13)-C(14)$	$115(3)$	$C(13)-C(14)-C(15)$	$116(3)$

reported have either a 'butterfly' structure with a $\mu_{4}-\eta^{3}$ interaction [4,5] or a tetrahedral structure with the allyl ligand interacting with only two osmium atoms, i.e. σ-bonding to one metal atom and η^{3} - π-bonding to the other [6].

In both 1 and 2, the hydride atom is probably bound to the Os-Os bonds spanned by the C_{3}-system, since this bond is the longest (2.952(1) \AA in 1 and 2.904(2) \AA in 2) and the CO-ligands appear to be forced away from the middle of the bond. One interesting feature of the molecular structure of $\mathbf{2}$ is the remarkably short Os -Os distance $(\mathrm{Os}(1)-\mathrm{Os}(3) 2.596(2) \AA)$ for the bond trans to the π-interac-

Table 4
Fractional atomic coordinates for 1

Atom	x	y	z
$\overline{\mathrm{Os}(1)}$	0.28873(5)	0.45604(3)	0.00292(5)
Os(2)	$0.20990(5)$	0.32273(3)	0.06267(4)
$\mathrm{Os}(3)$	0.36701(4)	0.31263 (3)	-0.05535(4)
C(1)	0.3914(13)	0.4821(9)	0.0810(13)
O(1)	0.4541(10)	0.4976(7)	0.1292(11)
C(2)	0.3024(12)	0.5330 (9)	-0.0894(14)
O(2)	0.3057(8)	0.5819(6)	-0.1513(10)
C(3)	0.2202(11)	0.5111(8)	0.0995(12)
$O(3)$	0.1827(9)	0.5426(6)	0.1620 (9)
C(4)	0.1071(13)	0.3557(9)	$0.1371(12)$
$\mathrm{O}(4)$	0.0465(9)	0.3758(8)	0.1788(9)
C(5)	$0.2915(12)$	0.3368(8)	$0.1721(13)$
O(5)	0.3425(8)	0.3412(6)	0.2393(8)
C(6)	0.1832(14)	0.2237(9)	0.0894(12)
O(6)	0.1672(9)	0.1629(7)	$0.1084(10)$
C(7)	$0.4294(11)$	$0.3110(8)$	-0.1822(15)
O(7)	0.4631(8)	0.3088(7)	-0.2645(9)
C(8)	$0.3793(14)$	0.2106(10)	-0.0299(11)
O(8)	0.3852(10)	0.1486 (6)	-0.0190(9)
C(9)	$0.4726(15)$	$0.3339(12)$	$0.0275(14)$
O(9)	0.5292(11)	$0.3400(8)$	0.0808(10)
C(10)	0.2401(12)	0.2871 (9)	-0.1044(10)
C(11)	0.1708(11)	0.3407(8)	-0.1083(10)
C(12)	$0.1764(12)$	0.4102(9)	-0.0616(11)
C(13)	0.0867(14)	0.4563(9)	-0.0693(13)

tion, and this may be due to poor back-donation to the organic ligand resulting in a slight multiple-bond character of the metal-metal bond.

Experimental

Pyrolysis for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{Me}_{2} \mathrm{C}_{2}\right)\right]$
In a typical reaction, a $63 \mathrm{~cm}^{3}$ Carius tube containing $61 \mathrm{mg} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{Me}_{2} \mathrm{C}_{2}\right)$ was evacuated for 3 h then sealed and heated at $210^{\circ} \mathrm{C}$ for 60 h . The product mixture was extracted with ethyl acetate at $80^{\circ} \mathrm{C}$ and the extracts subjected to thin layer chromatography on silica plates. Repeated elution with $30 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane gave five bands. The product in the first, yellow, band was identified as $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right](1)(\sim 60 \%)$ from spectroscopic data [2]. The second, orange, band was found to contain a mixture of two orange compounds which were separated by chromatography on alumina with hexane as eluent. They were characterised as $\left[\mathrm{Os}_{4}(\mathrm{CO})_{12}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right.$] (3, two isomers, $\sim 15 \%$) [3], and $\left[\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right](2, \sim 15 \%)$. The other minor products were not identified.

Table 5
Fractional atomic coordinates for 2

Atom	\boldsymbol{x}	y	z
Os(1)	0.26340(10)	0.10206(15)	0.03901(8)
Os(2)	0.26097(10)	0.32176 (14)	$0.16070(8)$
Os(3)	0.35276(9)	0.06125(15)	0.18445(8)
Os(4)	0.14471(9)	0.06801(14)	0.17890 (8)
C(1)	0.1684(35)	$0.1680(54)$	$-0.0514(30)$
O(1)	0.1159(24)	0.1847(37)	-0.1096(21)
C(2)	0.3787(26)	0.1467(37)	-0.0126(22)
O(2)	0.4551(22)	$0.1751(34)$	-0.0426(19)
C(3)	0.2695(29)	-0.0776(43)	$0.0040(25)$
$O(3)$	$0.2745(24)$	-0.2028(37)	-0.0139(21)
C(4)	0.3791(49)	$0.4050(73)$	$0.1179(40)$
$\mathrm{O}(4)$	0.4513(31)	0.4455(44)	0.0962(26)
C(5)	0.2377(33)	0.4709(48)	0.2323(28)
O(5)	0.2174(21)	0.5589(31)	$0.2797(18)$
C(6)	0.1771(26)	0.4032(39)	0.0736(22)
O(6)	0.1210(23)	$0.4485(34)$	0.0188(20)
C(7)	0.4912(33)	0.0859(48)	0.1633(28)
O(7)	0.5687(21)	0.1081(31)	0.1471(17)
$\mathrm{C}(8)$	0.3737(28)	-0.1376(43)	0.1771(24)
O(8)	$0.3942(19)$	-0.2462(30)	0.1732(17)
C(9)	0.0429(30)	0.1260 (46)	0.0938(26)
O(9)	-0.0200(24)	0.1554(36)	0.0498(20)
C(10)	$0.1359(27)$	-0.1251(40)	$0.1504(23)$
O(10)	0.1324(19)	-0.2414(29)	0.1312(17)
C(11)	0.0492(23)	$0.0566(36)$	$0.2637(21)$
O(11)	$0.0004(29)$	0.0324(42)	$0.3141(24)$
C(12)	$0.3441(28)$	$0.2360(42)$	0.2618(24)
C(13)	$0.3285(28)$	$0.1268(41)$	$0.3126(24)$
C(14)	0.2526(24)	0.0251(35)	0.2805(21)
C(15)	0.2428(26)	-0.1031(37)	0.3299(22)

Crystal structure determinations

Intensity data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer by the $\omega-2 \theta$ scan method. An absorption correction was applied by the Walker and Stuart method [7] (correction range 0.56-1.00 and 0.48-1.00 for 1 and 2, respectively). H-atoms were added in calculated positions (C-H $1.08 \AA$). All non-hydrogen atoms in 1 , and only Os -atoms in 2 were treated anisotropically. Isotropic values were refined for H -atoms in $1\left(0.12 \AA^{2}\right)$ and in $2\left(0.09 \AA^{2}\right)$. Fractional atomic coordinates for 1 and 2 are listed in Tables 4 and 5, respectively.

For all calculations the SHELX76 package of crystallographic programs was used [8].

Crystal structure data for $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right.$ (1). $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{O}_{9} \mathrm{Os}_{3}, \mathrm{M}=876.77$, orthorhombic, space group $P b c a, a=15.175(3), b=18.12(1), c=12.709(5) \AA, U=$ $3494.6 \AA^{3}, Z=8, \quad D_{\mathrm{c}}=3.33 \mathrm{~g} . \mathrm{cm}^{-3}, \quad F(000)=3072, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=209.5 \mathrm{~cm}^{-1}$, θ-range $2.5-25^{\circ}$ final R-value $0.030, R_{\mathrm{w}}=0.028$ for 1809 observed independent reflections ($I_{0}>2 \sigma\left(I_{\mathrm{o}}\right)$).

Crystal structure data for $\left[\mathrm{Os}_{4} \mathrm{H}(\mathrm{CO})_{1 I}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)\right]$ (2). $\mathrm{C}_{15} \mathrm{H}_{6} \mathrm{O}_{11} \mathrm{Os}_{4}, \mathrm{M}=1123.01$, monoclinic, $P 2_{1} / c, a=13.367(4), b=9.549(3), c=16.178(1) \AA, \beta=93.82(3)^{\circ}$, $U=2060.4 \AA^{3}, Z=4, D_{\mathrm{c}}=3.62 \mathrm{~g} \mathrm{~cm}^{-3}, \theta$-range $2.5-25^{\circ}$, final R-value 0.056 , $R_{\mathrm{w}}=0.060$ for 2032 observed independent reflections ($I_{\mathrm{o}}>2 \sigma\left(I_{\mathrm{o}}\right)$).

Acknowledgements

We thank Sino-British Friendship Scholarship Scheme for financial support (H.C.), and Johnson-Matthey for generous loans of osmium tetraoxide. Financial support by Ministero Pubblica Istruzione (Italy) is also acknowledged.

References

1 P.R. Raithby and M.J. Rosales, Adv. Inorg. Chem. Radiochem., 29 (1985) 169.
2 A.J. Deeming, S. Hasso and M. Underhill, J. Chem. Soc., Dalton Trans., (1975) 1614.
3 B.F.G. Johnson, J. Kelland, J. Lewis and S.K. Rehani, J. Organomet. Chem., 113 (1976) C42.
4 M.I. Bruce, M.A. Cairns and M. Green, J. Chem. Soc., Dalton Trans., (1972) 1293.
5 S. Aime and D. Osella, Inorg. Chim. Acta, 57 (1982) 207.
6 B.F.G. Johnson, J.W. Kelland, J. Lewis, A.L. Mann and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1980) 547.
7 N. Walker and D. Stuart, Acta Crystallogr., A, 39 (1983) 158.
8 G.M. Sheldrick, shelx76 Package of Crystallographic Programs, University of Cambridge, U.K., 1976.

